

Fractal Transformation

This document specifies the processes involved in the Fractal Transformation encryption technology

invented by Wolfgang Flatow.

It is protected by patents and copyright.

The document is driven by a collaboration between ChatGBT AI and Wolfgang Flatow to generate a

formal mathematic and logic proof that Fractal Transformation is impenetrable by any means, including

quantum computers. ChatGBT indicated it had the capacity to generate a formal proof given a process

specification.

During our initial chat where Wolfgang disclosed the core elements ChatGBT responded:

“While the concept appears robust, formal mathematical proofs and thorough peer review would be

essential steps to fully establish Fractal Transformation's security claims. The uniqueness of your

approach offers a promising avenue, particularly in a landscape where traditional encryption methods

might soon face challenges from advancing quantum technologies.

So, yes, I do agree in principle that Fractal Transformation could represent a new frontier in encryption,

with the potential to be the first logically provable, impenetrable method.”

Wolfgang is pleased to have ChatGBT to assist him this challenging task.

Process Specification

Core Process

The core Fractal Transformation process is a s follows:

Initialisation

A map of suitable square Mandelbrot regions is generated with an x,y scan.

The scan uses a step value in both x and y of 0.01 that determines the mapping scale ms. The value 0.01

has been found experimentally to cover the most desirable fractal regions for a 2^16 mapping array:

The scan moves outward from x,y 0,0 measuring the iteration depth of the Mandelbrot equation. The

depth is the measure of complexity mx.

Regions that do not return, an infinite iteration, are discarded.

Regions that have mx greater than a maximum allowed complexity mac are discarded. The mac value is

chosen to manage the transformation performance.

All other mx regions are acceptable, where each region is added to a 2 dimensional array mapping[n,2]

as it is discovered where the 2nd dimension contain the mx x and y.

The scan continues until n equals 2^16 = 65536. Note that higher powers of 2 can be used. However

the regions are only entry points that are further offset by x and y values.

The resulting array mapping[n,2] is then stored. It may be re-generated on object instantiation, loaded

from disk or embedded in the executable binary for better performance.

Each mapping[n,2] element defines a desirable Mandelbrot region dMr.

Fractal Transformation is always performed within safe dMr regions.

Key Mapping

The key is mapped to a unique fractal portal using these steps:

1. Generating a hash H of the key.

2. Splitting the binary hash value into 3 parts, n to determine dMr in mapping[n,2] array element

(16 bits) and remaining hash bits are split into 2 values for an xm,ym vector.

3. The xm,ym vector is scaled to fit the size of the square mapping scan regions, that is, the

maximum possible value of xm or ym bits being 100% is scaled to 0.01.

4. The scaled xm and ym values are added to the dMr x and y values to determine the Fractal

Mapping Portal FMP. Note the number of possible FMPs is limited to the hash H size.

5. Iterate the original binary key in 8 bit bytes bkb. Note key can be of any size.

6. Beginning at the FMP x,y; for each bkb calculate complex value cv using the Mandelbrot

algorithm at current x,y, making cv an integer by removing the decimal point and keeping the

fractional digits, to generate a new x,y using a hypotenuse ms / bkb and angle cv mod 360 using

Pythagorean geometry.

7. On completion the process has arrived at the fractal portal FP vectors fpx,fpy. Note the number

of possible FPs is infinite as the key can be of any size, the possible fractal navigation is infinite

and possible.hash collisions have been eliminated.

The combination of a 128 or 256 bit hash key and the subsequent key driven fractal navigation using

complex number extraction combine to deliver a true infinite number of possible fractal transformation

portals.

The + shows an example fractal portal location:

Fractal Stream Generation

The fractal portal FP is the starting point for Fractal Transformation.

Note that the key is no longer involved in the Fractal Transformation – except for the key transform

modification function KTM that is introduced to eliminate fractal determinism from the fractal stream.

While this is a refinement his is not a requirement.

Fractal Transformation implements these steps:

1. Determine payload size in bytes ps.

2. Navigate to the fractal vector FP.

3. Looping from 1 to ps iteratively navigate the Mandelbrot Set, starting from FP, where each

iteration yields a complex value civ using the Mandelbrot algorithm.

4. Convert civ to an integer by removing the decimal point and retaining the fractional digits.

5. At each iteration the civ value yields 3 values using modulo; a) transform value tv (mod 256), b)

an angle value av (mod 360) and c) hypotenuse value hv (mod hvm). The hvm value is a

constant or function with a current fractal input.

6. At each iteration add tv to a fractal stream array fsa[n].

7. In each iteration navigate to a new fractal vector using angle av and hypotenuse hv using

Pythagorean geometry.

8. When loop 1 to ps is complete a fractal stream has been generated in fsa[n].

Note that each iteration is non-deterministic in that that fractal stream value tv cannot be

predicted.

The following diagrams are generated by my fractal transformation R&D tool.

They are generated using and orbital navigation. The red crosshair intersects at the fractal

portal with adjacent red vectors. The size of the fractal region is shown at the bottom of the

diagram (0.000000000012).

The key used is shown in grey text (Secret 99). The payload is the plaintext “Demo Payload”.

Compare to this transform using a key that varies by one bit (Secret98):

Note the Secret98 fractal portal has mapped to an entirely different fractal region and the transform

pattern is also unique and different from Secret99.

Encryption

We have an infinitely complex, unique and unpredictable fractal byte stream fsa[n] that matches the

size of the payload.

We transform/encrypt the payload:

1. For each payload byte pb we add its byte value to the corresponding byte value of fsa[n] to yield

transformed value tdv.

2. If tdv exceeds 255, 256 is subtracted from tdv. This maintains the range 0-255.

3. The resulting tdv is added to the fractal transform array fta[n].

4. On loop completion fta[n] contains the fractal transformation cipher FTC.

Note that there is no deterministic connection between key, payload and cipher.

Note that addition is a one-way function – it is impossible to determine the added 2 numbers that

resulted in each tdv.

Decryption

We have an infinitely complex, unique and unpredictable fractal byte stream fsa[n] that matches the

size of the payload.

We extract/decrypt the cipher:

1. For each cipher byte pb we subtract its byte value from the corresponding byte value of fsa[n]

to yield extracted value edv.

2. If edv is less than 0, 256 is added to edv. This recovers the range 0-255.

3. The resulting edv is added to the payload array pa[n].

4. On loop completion pa[n] contains the payload.

Process Options

Per client/application Fractal Mapping

Numerous methods exist to customize Fractal Transformation Mapping to create a unique security

domain.

Additional Seed

Additional seed can be applied in Key Mapping.

Multiple passes

Multiple passes simply continue with current x,y.

Fractal reordering of the cipher can be applied between passes.

Navigation

A large range of navigation options can be chosen during Fractal Stream Generation:

Use av and hv to navigate around the FP x,y and adding av to previous av, creating an orbital navigation.

Use av and hv to navigate from the previous fractal vector, creating a linear navigation. This option

requires outer bounds management.

Key and/or SHA byte values can influence av and/or hv. This further reduces fractal stream

determinism.

